This Mathematics Tutorial will focus on LOGARITHMS. We will explain it with examples and give you exercise. At the end of the tutorial, you’ll be able to download it for FREE. Please share this page with your friends who may need it.
Logarithms are mathematical functions that represent the exponent to which a specific base must be raised to obtain a given number.
They are widely used in various fields, including algebra, calculus, and computer science.
The logarithm of a number x to the base b is denoted as logb(x) or simply log(x) when the base is 10.
Page Contents
Properties of Logarithms:
- Product Rule: logb(xy) = logb(x) + logb(y)
- Quotient Rule: logb(x/y) = logb(x) − logb(y)
- Power Rule: logb(xn)=n ⋅ logb(x)
- Change of Base Formula: logb(x)=logc(x) / logc(b)
Note: (⋅) in mathematics means multiply
Examples:
Example 1: Solve for x in the equation 2x=8.
Short solution:
x = log2(8)
= log2(23)
= 3
--Content Continues after this short break:--
---------------
ALLSCHOOL JAMB ONLINE LESSON: Prepare for your JAMB Exam smartly and guarantee a high JAMB Score. Hundreds of Our Past Students With Excellent Results are already Studying their Dream Courses. YOU should be next!
JOIN ALLSCHOOL JAMB LESSON NOW!!!
---------------
SMASH THE EXAM: Get familiar with the JAMB Exam Method. Practice JAMB Past Questions in a fun way. Study wisely with the ALLSCHOOL JAMB CBT App Click Here to learn more.
--Content continues below--
Long Explanation:
- Recognize that 2x=8 can be rewritten using logarithms as log2(8)=x.
- Apply the definition of a logarithm to write the equation in exponential form: So 2x = 8 is equivalent to x = log2(8).
- Evaluate the logarithm: log2(8) is asking, “To what power must 2 be raised to get 8?”
- The answer is 3 because 23 (i.e. 2 x 2 x 2) = 8.
- Therefore, the answer is x = 3.
Example 2: Simplify the expression log5(25) + log5(⅕).
Short explanation:
log5(25) + log5(⅕) = log5(25 ⋅ ⅕)
=log5(5)
=1
HOT TIP: Whenever you see loga(a), for example, log5(5), log2(2), or log7(7) the answer will always be 1.
Long Explanation:
- Use the product rule of logarithms, which states that logb(xy) = logb(x) + logb(y).
- Apply the product rule to combine the two logarithms: log5(25) + log5(⅕) = log5(25 ⋅ ⅕)
- Simplify the expression inside the logarithm: 25 ⋅ ⅕ = 5.
- Therefore, the simplified expression is log5(5).
- Evaluate the logarithm: log5(25) is asking, “To what power must 5 be raised to get 5?” The answer is 1.
- So, the final result is 1.
THINK & ACT : If we can give you this for FREE, imagine what we can give if you pay and join the ALLSCHOOL JAMB Online Lesson. In the lesson, our hardworking tutors ensure they only teach you things that will come out in JAMB, so you’ll score extremely high in JAMB. Click Here to join the ALLSCHOOL JAMB Online Lesson NOW.
Exercises:
Make sure you try solving these questions yourself. It’ll help you understand the topic very well.
- Solve for x: 3x = 27.
- Simplify: log2(4) + log2(8)
- If loga(b) = 2 and loga(c) = 3, find loga(bc).
- Solve for x: ex = 20.
- Simplify: 2log3(5) − log3(125)
SOLUTIONS TO EXERCISES
Hey, don’t cheat yourself. Make sure you attempt the exercise before checking the solution.
Exercise 1: Solve for x: 3x = 27.
Short solution: x = log3(27) = log3(33) = 3.
Long Solution:
- Apply the definition of logarithms to rewrite the equation as x = log3(27).
- Evaluate the logarithm: log3(27) is asking, “To what power must 3 be raised to get 27?” The answer is 3 (because 3 x 3 x 3 is 27).
- Therefore, the solution is x = 3.
Exercise 2: Simplify: log2(4) + log2(8)
Short Solution: log2(4) + log2(8) = log2(4 ⋅ 8) = log2(32)
Long Solution:
- Use the product rule to combine the two logarithms: log2(4) + log2(8) = log2(4 ⋅ 8)
- Simplify the expression inside the logarithm: 4 ⋅ 8 = 32.
- Therefore, the simplified expression is log2(32).
Exercise 3: If loga(b) = 2 and loga(c) = 3, find loga(bc).
Short solution: loga(bc) = loga(b) + loga(c) = 2+3 = 5
Long Explanation:
- Use the product rule of logarithms: loga(bc) = loga(b) + loga(c)
- Substitute the given values: loga(bc) = 2+3 = 5.
- Therefore, loga(bc) = 5.
Exercise 4: Solve for x: ex = 20.
Short solution: x = ln(20) = 2.996
Long Explanation:
ex = 20
Whenever you see this kind of question, just apply the natural logarithm (denoted as ln) to both sides to solve for x
So you will have ln(e)x = ln(20)
Natural Logarithm always cancels exponential.
So we will just have x = ln(20)
If you punch ln(20) in your calculator, you’ll get 2.996.
Exercise 5: Simplify: 2log3(5) − log3(125)
Short solution: 2log3(5) − log3(125) = log3 (52 / 53) = log3 (⅕)
Detailed explanation:
- Use the power rule of logarithms: 2log3(5) can be written as log3(52).
- Substitute this back into the expression: log3(52) − log3(125)
- Simplify: 52 = 25, so the expression becomes log3(25) − log3(125)
- Apply the quotient rule: log3(25) − log3(125) = log3(25 / 125).
- Simplify the fraction inside the logarithm: 25 / 125 = 1/5.
- Therefore, the simplified expression is log3(⅕).
THINK & ACT : If we can give you this for FREE, imagine what we can give if you pay and join the ALLSCHOOL JAMB Online Lesson. In the lesson, our hardworking tutors ensure they only teach you things that will come out in JAMB, so you’ll score extremely high in JAMB. Click Here to join the ALLSCHOOL JAMB Online Lesson NOW.
Download the Maths Tutorial for Free
Recommended Articles for JAMBites
- Join Allschool JAMB Lesson and Score Very High in JAMB [Tested & Trusted]
- Practice Real JAMB Past Questions with ALLSCHOOL JAMB CBT App
- Install LitTexts App: 2025 Literature Prose, Drama, & Poetry at your fingertips.
- How to Score Extremely High In JAMB [7 Trusted Tips]
- JAMB Free Tutorials [💯 Free]
- All JAMB News and Updates
- Download JAMB Novel – The Lekki Headmaster [Free PDF]
- Likely Questions And Answers From The Life Changer
- When is the JAMB Exam Starting?
- JAMB Runs is FAKE
- Idioms You Might See in Your English JAMB Questions [Hurry, Check Them Out!]
- JAMB Syllabus for All Subjects [Official & Updated]
- Updated Accredited JAMB CBT Centers in Nigeria.
- How to Register for JAMB In Just 3 Steps [Everything you need to know]
- How Much Is JAMB Form 2025
- Solutions to Profile Code Issues [Get Yours Fixed Instantly]
- How to Fill JAMB Form the Right Way [Avoid Silly Mistakes]
- JAMB Brochure: JAMB Subject Combination for all Courses
ALLSCHOOL TEAM
Thank you so much for reading. We will appreciate it if you share this with your loved ones.
Stories You Shouldn't Have Missed:
- Candidates can expect WASSCE results 45 days after last paper – WAEC
- Police Dismiss Alleged Terrorist Attack Plot on University of Abuja as False
- Father Dances in Front of Daughter’s School, Makes Her Shy (Video)
- 20-Year-Old Lady Emerges Overall Best Student at Baze University
- Brilliant Girl Who Scored Highest in JAMB, Shines Again, Achieves 8A1s in WAEC
- Borno Receives 1,500 Menstrual Hygiene Kits from NGO
- Teacher Arrested For Pulling 12-year-old Student’s Hair during altercation
Join Our 500,000+ Community:
1 =3, 2=5, 3=5,